Visual Utility for the localization of Corona-Accelerated Nuclei

J. Spagnuolo Jr.,*Cecilia Cheng,†U. M. Schwuttke,‡ and FelipeHervias†

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109.8099*

The proton prediction system developed by Smart and Shea (Smart, 1). 1., and Shea, M. A., "171576 A Computerized Event Mode" Solar Proton Forecasting Technique," Solar Terrestrial Prediction Proceedings, edited by R. F. Donnelly, Vol. 1, National Oceanic and Atmospheric Administration/Environmental Research Lab., U.S. Dept. of Commerce, 1979, pp. 406-423) provides the approximate magnitude of the fluxes of solar-flare-ejected protons in the vicinity of the Earth. A system is described that extends Smart and Shea's work in that it predicts fluxes of sock protons at arbitrary points of the inner heliosphere near the plane of the solar equator. It has interactive graphical components that enhance the user's overall perception of a flare's effects upon the solar system while also providing precise user-requested data. The flux predictions of the system agree well with proton fluxes as measured by various spacecraft. Results are given. A database of flare events is maintained and can be used for a retroactive analysis when it is desired to know the magnitudes of potential proton fluxes due to a previous flare.

Nomenclature

Tiomenciatare	
(1	distance from the son to a point under discussion
	divided by a quantity discussed in Eqs. (15-22.)
d(x, y)	distance from apoint or body x to a point or
	$\operatorname{bod} y y$, km
r_{c_1}	radios of the son
(χ_h, V_h)	coordinates of a point b with respect to a
	heliocentric coordinate system whose x - y plane
	passes throughthe solar equator
٤	center of the Earth
ε-point	point contained in the intersection of ε -sumplane
	and solar equator that is closest to Earth
£-sun plane	plane containing the center of the Earth and the
	north and south poles of the sun
λ_I	heliocentric latitude of the solar flare F , rad
ξ	angle used to form the spiral shape as discussed
	in Eqs. (15-22), rad
ĭ	an arbitrary point in space
7,	a point in space at position.
τ-point	point in the intersection of t-sumplane and solar
	equatorthatis closest [() T
r sun plane	plane containing an arbitrary point in space r and
	the north and south poles of the sun
ϕ_A	Archimedean angle, rad
ϕ_I	heliocentric longitude of the solar flare F with
	respect [0 Earth, rad
ϕ_1	vertical angle between a line L passing through
	the sun's center and the solar equator, rad
ϕ_{i} ,	angle. between the epoint and the apoint along
	the solar equator, rad

Introduction

THERE is considerable controversy as to whether flares are the 1 sole producers of energetic protons or whether corona] mass ejections play a central role. We note that the system described in this paper is presently capable of computing flux predictions only for protons associated with solar-flare activity. The techniques used in

Received April 20, 1995; revision received March 2, 1996, accepted for publication March 2, 1996. Copyright ©1996 by the authors Published by the American Institute of Aeronautics and Astronautics, Inc with recruission

*Senior Member, Technical Staff, Information Systems Development and Operations Division

¹⁴ Member, Technic al Staff, In formation Systems Development and Operations Division

[†]GroupLeader, Advanced Multimission Software Technology Group, Information Systems Development and Operations Division

this paper (to not permit the inclusion of a shock-associated particle increase such as is often present at the passage of an interplanetary shock. Therefore, even if not explicitly stated, all proton fluxes discussed in this paper will be those associated with flares

eff len

two pc

tŀ

de

OI

W

d:

Solar-flare-associated phenomena can cause a variety of difficulties in spacecraft mission operations. Detailed knowledge of the intensity of the protonfluxes over time from an observed solar flare can provide information to mission personnel that would enable them to minimize the effect of flares on operations. Further, if some aspect of mission operations exhibited unexpected behavior in the past, it would be useful to rule out or demonstrate the possibility that solar-flare-associated phenomena might have been the source of the problem. Such a retroactive analysis has already been (tone with respect to Mars Observer? and Topex.)

Much work has been done on determining the criteria for predicting the impact of solar-flare-ejected protons upon the Earth. Smart and Shea 5.6 and Heckman et al. Thave devised models that predict the fluxes at Earth on the basis of certain electromagnetic indicators sent out by the flares 1 he Smart-Shea and Heckman models yield flux data for Earth that are generally within an order of magnitude of the real flux values

It was desired to determine whether the underlying ideas of any of these existing systems could be generalized to predict proton fluxes. for points of the solar system other than Earth. It was also desired to add appropriate graphics that would enhance the user's overall perception of the solar flare's effects upon the solar system while providing, at any time, precise and accurate flux data The sol a flare tool developed from these specifications is called the visual utility for the localization of corona-accelerated nuclei (VULCAN) and is named after the Roman god of fire. The basis for VU I. CAN is the Smart-Sheamodel,5 " rel'erred to as PPS86, Smartand Shea described how to extend their model to the inner heliosphere near the plane 01 the solar equator and were readily available for discussions on thescientificas well as practical aspects of their work These reasons, together with the long documentation and implementation history characterizing PPS86, made it a good choice for the basis of VULCAN.

VULCAN relies on 1-8-Å peak x-ray data from rhc National Oceanographic and Atmospheric Administration (NOAA) in Boulder, Colorado, for indication of solar-flare activity. The peak flux, the time of detection, and the latitude and longitude associated with the flare are also sent Fluxes resulting from proton producing locations outside of the visible 180-deg area for Earth arc not computed by VULCAN, as NOAA is not able to acquire the requisite x-ray data Required planetary data are provided by the SPICE 10 system The SPICE system provide sephemeris data and associated software that accurately computes the positions of the sun, planets, spacecraft, and other celestial bodies of interest over specified periods of time Advantages of using VULCAN include improve. (1

cle

efficiency in solving ground-link and instrumentation tailure problems, specific options relating to the delay of continuum cations between ground stations until peak disturbances have subsided, and possible opportunities for conducting science observations

Comparisons of VULCAN's flux computations vs me asured proton fluxes for spacecraft in the inner heliosphere near the plane of the solar equatorare presented in the last section of the paper. For points outside this region, the validity of the VULCAN software is less certain. However, VULCAN has the capability of incorporating arbitrary trajectories into its graphics and computational modules [0 derive a prediction of fluxes all points away from the solar equator outside the inner heliosphere, thus enabling future experimentation with the program to determine the limits of its accuracy

Eventhough Smartand Sheat produced specifications for extending their proton prediction model, other techniques having a geometric and analytic nature had to be developed to facilitate the merging of these specifications with [heir already existing theory to produce VULCAN. Aside from the discussions of the graphics displays, the presentation of certain of these mathematical considerations characterizes what follows.

Narc-Angle Determination

Background

Data required to run VULCAN are obtained from the Space Environment Laboratory of NOAA in Boulder, Colora do In addition to parameters relating to the time of the flare and its associated x-ray data, the latitude and longitude of the flare with respect to the Earth are obtained "1 he exact meaning of the phrase latitude and longitude with respect [o xwill be given in the following discussion [] he purpose of the flare extrapolational gorithm is to use the latitude arid longitude of a flare with respect to Earth to determine the location of the flare with respect to an arbitrary point in space at which we wish to compute the fluxes

Geometry

To describe the flare-angle extrapolation algorithm, we first discuss certain geometrical aspects of the problem. The spatiality of the ε - sun plane, the τ - sun plane, the ε - point, and the τ - point are illustrated in Fig. 1a. Here, the four asterisks represent the north and south poles of the sun, ε , and τ . The dashed curved lines represent the intersections of each of the planes with the sun's surface. The angle $\phi_{\varepsilon,\tau}$ is shown as well. Figure 1b presents a top view of Fig. 1a. Since the familiar generalized form of the Pythagorean theorem is used to derive $\cos\phi_{\varepsilon,\tau}$, we have $0 \le \phi_{\varepsilon,\tau} \le n$. An appropriate sign

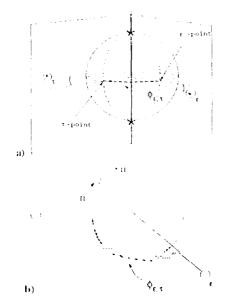


Fig. 1 Earth and 7 planes: a) side perspective and b) top perspective of ϵ -sumplane and 7- sumplane.

will be given to the angle ϕ_{ϵ} , based upon considerations presented in the following discussion

As mentioned earlier, the latitude and longitude of the flare are computed and sent 10 VUI. ('AN by NOAA at Boulder, (!olorado Latitude is measured in the intervals $[0, \pi/2]$ and $[0, \pi/2]$ going from the solar equator 10 north pole arid south pole respectively. As labeled in Fig.1b, positive longitude (from the earth's perspective) is measured counterclockwise (from the vantage point of the north pole) on the solar equator in the interval [0, π], where () is the arepsilon point. Negative longitude is measured clockwise in the interval [0, n]. The longitude of a flare as sent by NOAA is approximately in the interval $[-\pi/2,\pi/2]$, since it has to be seen by Earth The longitude of a flare with respect 10 an arbitrary point in space is subject [0 the same interval conventions as mentioned above except that the flare longitude is measured in relation to r. The theory underlying VULCAN is such that if it is desired to compute the flux atapoint in space, then the latitude and longitude of the flare with respect to that point (measured as described above) must be used in the computation. If L is a line drawn from the sun center to the point in space, then the latitude of the flare with respect to the point is easily given by λ_F - ϕ_I However, the longitude of the flare from NOAA is given with respect to the ε -point and not with respect to a fixed location on the sun (as latitude is with respect to the solar equator), Therefore, the longitude of the flare has to be adjusted in a more complicated fashion 10 compute the flux for points other than at Earth The purpose of the tlarc-angle extrapolation algorithm is to compute this adjusted longitude given [he longitude of the flare as sent by NOAA To derive the proper long itude to compute the flux at a point t, we must use the flare longitude with respect to Earth and the longitudinal angle ϕ_{ij} , that is as shown in Fig 1b

A demonstration of what is involved in this computation involves a consultation of Fig 2. The quantities $\phi_{e\tau_1}$ and ϕ_{e,τ_2} are the angles betweenthe Earth and the points at positions I and 2, respectively The positions of the planets are computed with respect to anxy-z coordinate system where the x- y plane is the plane of rhc solar equator. The quadrants are numbered as indicated. In general, to determine the longitude of a flare with respect to a point in space, the algorithm first computes the magnitude of the longitudinal angle between the ε point and the τ point in space as defined earlier By examining the flare angle, the flare extrapolation algorithm does d case-by-case analysis based on the quadrants the planets are in The quadrants are based upon the spoint and the spoint and discussed earlier. Using these cases, the program determines whether to add plus or minus the angle between the Earth and; to the already known flare angle ϕ_I (given with respect to Earth), to obtain the angle between rand the flare. For example, if the Earth is in quadrant [

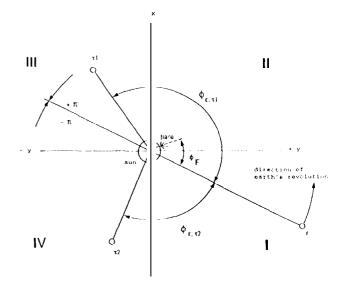


Fig. 2 Orbital perspective of arbitrary points and Earth.

7.24 " SPAGNUOLOET AL

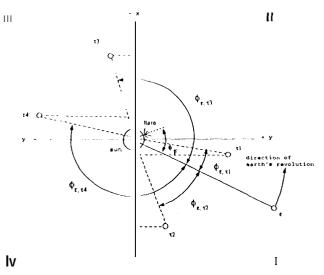


Fig. 3 Some positions requiring arctangent treatment.

and it is in quadrant III, a sample orientation of which is shown in Fig. 2, then the angle between the target at position 1, τ_1 , and the flare is $\phi_I - \phi_{e\tau_1}$. If the Earth is in quadrant 1 and τ is in quadrant IV, then the angle between the flare and τ_2 is $\phi_I + \phi_{e\tau_2}$. When the angle falls outside the intervals $[0, \pi]$ and $[0, \pi]$ mentioned earlier, the program will adjust it so that it is within these intervals. We discuss this in what follows

Knowing which quadrants the Earth and target arc in is generally not sufficient for determining ϕ_{ℓ} . If the Earth and target are inthe same quadrants or arc in opposite quadrants (1 and III or II and IV), it is not clear whether to add ϕ_{ℓ} , to or subtract it from ϕ_{ℓ} to determine the longitude of the flare with respect to the point in these cases, the arctangent function is used to determine the relative positions of flare rind target. For example, in Fig.3, a target in quadrant III could be in position 3 or 4. In position 3, the angle between the flare and τ is ϕ_{ℓ} ϕ_{ℓ} τ_{ℓ} . However, if τ is at position 4, the angle between the target and the flare is ϕ_{ℓ} (ϕ_{ℓ}) (τ_{ℓ}) . Note that this angle falls outside the prescribed longitudinal intervals $\{0,n\}$, $\{0,n\}$. In this case, the algorithm adds

2ntoits value so that it dots fall in one of the prescribed intervals hatarget is in the same quadrant as the Earth, ambiguities arise as well. In position 1, the angle between the flare and r is $\phi_F = \phi_{\ell-\tau_1}$, whereas in position 2 the angle. is $\phi_F + \phi_{\ell\tau_2}$ in fact, if τ and ϵ arc in quadrant I, [hen whether $\phi_{\epsilon,\tau}$ is added to or subtracted from ϕ_L depends upon whether τ 's position is clockwise. or counterclockwise to the ε -sun plane. Also, if ε is in quadrant I and τ is in quadrant III. then whether ϕ_{τ} , is added to or subtracted from ₱1 depend\ on whether 7's position is counterclockwise m clockwise [0 the extension of the \varepsilon - sun plane into quadrant III. We now show how these ambiguities are resolved try use of the arctangentfunction. In what follows we assume that $(x_{\epsilon}, y_{\epsilon})$ are the coordinates of Earth and $(x_{\tau t}, y_{\tau t})$ are the coordinates of τ at position ζ for 1 < ζ < 4. It crrn be determined that in quadrant $\arctan(y_{t_1}/x_{t_1}) > \arctan(y_{t_1}/x_{t_1})$. We can use [his information to conclude that $\phi_{\ell_{T_1}}$ can be subtracted from ϕ_{ℓ} to obtain the correct angular distance between t and the flare when t is in posit ion 1. Further, based upon the fact that $\arctan(y_{\tau_2}/x_{\tau_2}) < \arctan(y_{\ell}/x_{\ell})$, the algorithm adds the angle ϕ_{ℓ_1} , 10 ϕ_{ℓ} when ℓ is in position 2 to de. termine the angle between the flare and τ_2 . Using similar reasoning for the third quadrant, the fact that $\arctan(y_{\tau_1}/x_{\tau_3}) < \arctan(y_{\epsilon}/x_{\epsilon})$ can be used to determine that the angle, between the target at position 3 and the flare is ϕ_I - $\phi_{t\bar{t}_4}$. Also, since $\arctan(y_{t_4}/x_{t_4})$ > $\arctan(y_{\ell}/x_{\ell})$, the angle between the flare and at position 4 is $\phi_{I-1} \phi_{\ell_{T_4}}$. We note that the geometrical relations displayed in the figures are only examples used 10 illustrate techniques that are used in an extended and modified form throughout the algorithmandrepresent only a subset of what has to be considered. [o determine the angle between 7 and F given more generalinitial configurations of ε , τ , and I

Analysis

Background

In the last section, we gave an overall view of the spatial orientation between points that were determined by the ϵ sun plane and various τ -sun planes intersecting the solar equator. In this section, we determine the coordinates of an arbitrary ' λ '-point given the coordinates of an arbitrary point. N. From this, we can then find a general form for [free distances between the ϵ -point and the sun center, between a τ -point and the sun's center, and between the ϵ -point and the τ -point. This enables us to determine the angle ϕ_{ϵ} , between the Earth and τ -using the generalized Pythagorean theorem. We assume that the Cartesian plane in which all computations are done has as its origin the center of the sun with the τ -t z and z axes passing, respectively, through the north and south poles of the sun,

Formulation

Give n that τ is an arbitrary point in space, possibly representing Earthor any other planet, spacecraft, or object in the solar system, we first determine the equation of the τ -sun plane. In our chosen coordinate system, the origin, north pole, and projection of the center of τ on the x- y Cartesian plane are all in the z-plane. These points are denoted by (0,0,0), $(0,0,z_n)$, and $(x_p,y_p,0)$, respectively. From this, we deduce that the equation of the τ -plane satisfies

$$Ax_p + By_p = 0 ag{1}$$

If both x_p and y_p are 0, then τ is atthenorth or south pole and the Archimedean solar transport no deldoes not apply. We thus assume that both are not simultaneously equal to $0 \parallel x_p \equiv 0$ and $y_p \equiv 0$, then $\tau \in (vr, 0)$, where v is the sign of y_p . If $y_p \equiv 0$ and $x_p \equiv 0$, then $\tau = (vr, 0)$, where v is the sign of x_p . The following analysis assumes therefore that neither $x_p \equiv 0$ is equal to 0. Since this assumption in turn implies that $A \equiv 0$ it and only if $B \equiv 0$, we therefore assume also that A and B are both unequal 10. On the analysis which follows

From the preceding paragraph, we can normalize the coefficient of \boldsymbol{x} and obtain

$$\mathbf{t} = (x_p/y_p)\mathbf{y} = 0 \tag{?}$$

as the equation of the τ plane. Since the τ point intersects the sour equator, we have

$$x = (x_p / y_p) y = (x_p / y_p) \left(\pm \sqrt{r_{60}^2 - x^2} \right)$$
 (3)

resulting in

$$x^2 = (x_p/y_p)^2 r_{C}^2 - (x_p/y_p)^2 x^2$$
 (4)

Thus, the possible coordinates for the z point are

$$x = \pm \frac{r_{\mathcal{O}}(x_p/y_p)}{\sqrt{1 + (x_p/y_p)^2}}$$
 (5)

and

$$1 = \pm \frac{I_{11}}{\sqrt{1 - 1} (x_n/y_n)^2}$$
 (6)

where the plus-or-minus signs are due 10 the fact that the τ plane intersects the solar equator in two places. Note that there are only two pairs of coordinates (a) opposed 10 four) because from Eq(2) the positive root is used for χ we next compute the distance from $(x_p, y_p, 0)$ to each set of coordinates $(x, y_x, 0)$ and $(x, y_y, 0)$, where the former denotes the positive roots of Eqs (5) and (6), and the latter the negative roots. We then choose the coordinates that represent the point that is closer $(x_p, y_p, 0)$, where the former denotes the positive roots of Eqs (5) and (6), and the latter the negative roots. We then choose the coordinates that represent the point that is closer $(x_p, y_p, 0)$ in the τ -point is always less than the distance from $(x_p, y_p, 0)$ to the point directly opposite the τ -point on the solar equator. In mathematical terms, if we define

141 nd he nc 318 Ų. ាខ្ល m. ЗĐ itts $^{\rm d}$ he 110 () 0. ВC

)) (1)

3)

4)

(5)

·6)

aly (2) sed of tes its ser tis

ally

 $d_{t} = \frac{1}{N} \left((x_{p} + (-1)^{t} \sqrt{\frac{r^{2}}{(x_{p}/x_{p})^{2} + 1} \frac{x_{t}}{x_{t}}} \right)^{2} + \left((x_{p} + (-1)^{t} \sqrt{\frac{r^{2}}{(x_{p}/x_{p})^{2} + 1}} \right)^{2}$ (7)

then

$$t \text{ point} := \begin{cases} (x_{+}, y_{-}) & \text{if } d_{0} : \min\{d_{0}, d_{1}\} \\ (x_{+}, y_{+}) & \text{if } d_{1} : \min\{d_{0}, d_{1}\} \end{cases}$$
(8)

Equations (7) and (8) (4) (11[1] have been replaced by a procedure that compared $^{\rm COC}$ ordinate signs between (x, y,) and (x_p , y_p) and

between (x_0, y_1) and (x_p, y_p) ; however, we felt that \mathfrak{g} by mathematical approach was cleaner than a case-by-case analysis

Graphics

Archimedean Spiral

The Archimedean angle with respect to a point τ is defined as the angular distance that the sun rotates in the time it takes for a

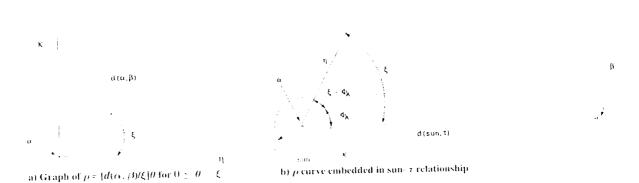


Fig. 4 Archimedean-spiral analysis

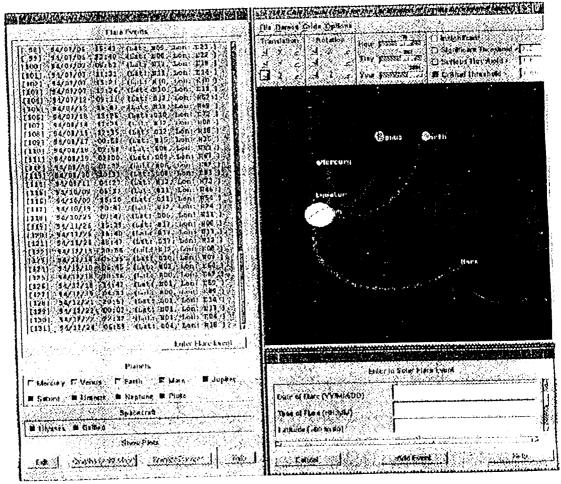


Fig. 5 Intuitive view of flux data.

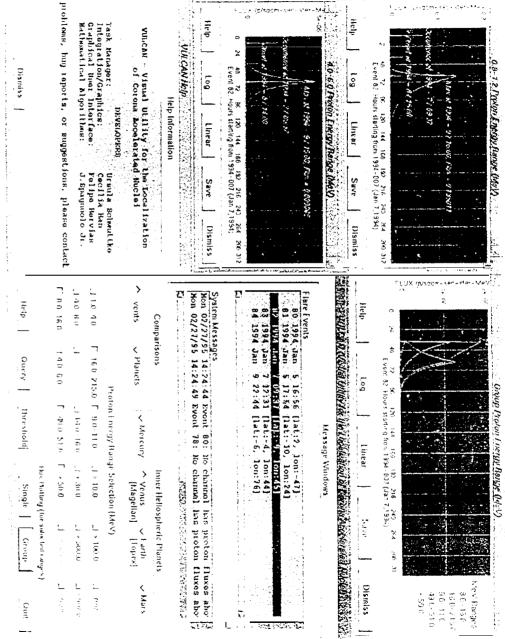


Fig. 6 Analytic view of flux data

particle to go from the sun to τ , assuming it leaves the sun in a radial path. This is also expressed by the formula $\mathcal{D}_{\Sigma} = \pi \mathcal{D}/V$, where m_{Σ} is the angular rotation rate of the sun, r is the distance from the sun to the point, and V is the speed of the particle. For any point in the inner heliosphere near the plane of the solar equator, present models of solar-particle transport assume that the protons travel along a pathway in the form of an Archamedean or Parker Spiral $^{1/4}$ given by

$$a\theta$$
, $0 < \theta < \varepsilon$

where χ (which will be more fully discussed below) is related to θx with respect to that point and α is the distance from the sun to the point in question divided by ξ . In what follows, we discuss how to construct the Archimedean spiral graphically. For purposes of exposition, we will assume that τ is in the plane of the solar equations and then young through the spiral-constitution η is not the solar equation and then young through the spiral-constitution of the solar will be presented in the following discussion. The compact constitutional real spiral for τ in its original position is then one of solar equation attached, keeping shape as it was formed with respect to the plane of the solar equator.

The graph of the above function has the approximate form show in Fig. 4a. The astronomical interpretation of this graph is realized by embedding it in the sun τ spatiality as shown in Fig. 4b. The correspondence of the labels α, β, η , and κ in Figs. 4a and 4b in the above, that the spiral shape in Fig. 4a was flipped and rotated to obtain the orientation displayed in Fig. 4b. The view in Fig. 4b is

from a northerly perspective. Here dosin, it is the length of the line connecting the sur to the point of The angle that the graph rackes with the line connecting the sun with it is interpreted as being of The graphical creation of the shape of the Avaluated in spiral trips has two requirements. Dit must be of the form given by Eq. (9) and 2) it must be such that when one end is placed at the sun's center and the other at rules shown in Fig. 4b, its intersection with the solar equator is at longitude g_{tot} , the given calculated. Archimedean angle for the point t_{tot}

Both 12 and 23 require the determination of the angle (a) To this end we note that inview of both diagrams in Fig. 4 and the definition

the 1.3 + 1.1 + 34 since I the two there $\frac{\partial}{\partial x}$

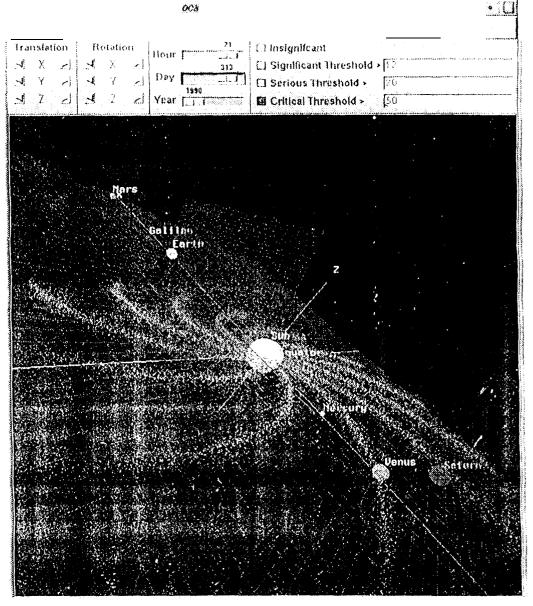


Fig. 7 Perspective of the heliosphere.

radicating that for computations where real astronomical parameters are used.

$$\frac{d(\cdot,t)}{t} \gg 0 \qquad \epsilon = \phi_{\lambda} \tag{15}$$

However, for purposes of graphical presentation, the relative magnitudes of distances and planet size (are considerably different from those used in realistic computations characterizing solar physics to facilitate display, the tatio of the distance between the san and γ to the radius of the sun may be much smaller than in realist, implying that the difference between β_0 and γ is not very small thas justifying the above treatment.

Interactive Visual Configurations

There are essentially two ways that VULCAN has of prescring solar-flare data to the user. The first is intuitive. The second is analytical. Upon reception of solar-flare data, the former gives an immediate overall view of the solar flux conditions at various points of the inner heliosphere, whereas the latter allows the nace to obtain more precise flux-related data at an arbitrary point. These two modes of computational presentation, complement one another in the sense that the point the user chooses to analyze using the perspective afforded by the second mode is generally influenced by the overall view of the flux intensities displayed by the tirst mode.

Figure S shows the windows for the intuitive treatment of the solar system The leftmost window has a listing of the received flare events from Bould er. in the rightmost window, the color of each Archimedean spiral indicates the intensity of the protons going from sun to planet. Figure 6 presents more detailed flux information relating to flare events. I forci flux-vs-time graphs are displayed forvarious user-sciected planets and proton energy ranges Finally, Fig. 7 displays the continuous movement of particles in time throughout the solar system. A capability for displaying the various orbital planes exists as well. The solar equator and the ε - sun-plane are displayed

Comparisons with Real Data

Computed maximal values of the flux as compared with those measured by actual spacecraftat varying positions with respect to the sun arc shown in '1'able 1, Spacecraft distances from the sun ranged from 0.77 to 1.52 AU. The differential flux value s are measured in protons/cm² s sr MeV, and correspondingly the integral flux is measured in protons/cm² s sr. The actual flare angle with respect to the Earth sun line was given by NOAA at Boulder. The flare extrapolational gorithm used the spacecraft trajectory to compute the ESP angle, subsequently deriving the angle between the spacecraft and flare Table I represents all cases in which we were able to obtainsufficientflare anti spacecraft dataforcomparison.91214 The computed values are in accordance with the expected accuracy of the Smart-Sheal model.

Conclusions

We have developed a system that directly receives data from NOAA via modem and uses ephemeris data to predict (tic effects of solar flares on the planets and spacecraft (near the solar equator) of the inner heliosphere Experimentation with the model's underlying predictive capability at other points of the solar sys tem is possible also, although the accuracy of the computed fluxes is not guarant ced in [his region. The system allows as input userconstructed flare events or those on record as sent by NOAA to determine what fluxes will result be they in the past or in the future Graphical use r interfaces together with manipulable views of the solar system and color coding of proton flux paths facilitate experimentation with interdependent parameters. This allows determinationolhowanalteration of their values causes variations on the computed distribution over time of solar particles at various points throughout the solar system. The accuracy of the model has been demonstrated.

Acknowledgments

The authors would like to thank M. Shea and D. Smart for their scientific collaboration. We would also like to thank Neil Toy, Harry Woo, EdNg, Guy Spitale, Alan Quan, Robert Angelino, Jim Gersbach, and Mike dc Gyurky for their technical support and managerialassistance during the course of this work The system can be obtained by contacting any of the authors of this paper via e-mail at (authorname)@ jpl nasa.gov or contacting the Information Sys tems Development and Operations Division at the Jet Propulsion Laboratory.

References

¹Robinson, P. A. Ji"The Effects of High Energy Particles on Planetary Missions," Proceedings of the IPL Workshop in the Interplanetar's Charged Particle I in tronment, edited by 1 Feynman and S Gail wiel, NASA IPL Publication 88-28, 1988, pp 39-46
²Spitale, (i | C "Sol at Event Environment atMarsatthetimeofLossol

Communications with Mars Observer," Jet Propulsion Lab. J. 4. Interoffice Memorandum 52 1 5-93267, California Inst of Technology, Pasadena, CA.

³Richter, R and Spag nuo lo. J. Jr. "Energetic Solar Particle Activity During the Time of Astra I-B Failure," Jet Propulsion Lab., JPL Interoffice Memorandum 3544-TOP-94001, California Inst. or Technology, Pasadena,

CA, Jan 1 994

Cliver, EW Secan, J. A., Beard, E. 1), and Manfey, J. A., "Prediction of the control of the cont of Solar Proton Events at the Air Force Global Weather Central's Space Environmental Forecasting Facility," Proceedings of the 1978 Symposium on the Effect of Ionosphere on Space and Terrestrial Systems (Al lington, VA), edited by John M Goodman, U.S. Government Printing Office, Washington, DC, 1978, pp. 393-400

Smart, DF and Shea, M. A., "PPS76. A. Computerized 'Event Mode' SolarProton Forecasting Technique," Solar Terrestrial Prediction Proceedings, edited by RF Donnelly, Voll, National Oceanic and Atmospheric Administration/EnvironmentalResearch 1.011, U.S. Dept of Commerce, 1979.

pp 406 423
6Smart. 1) Frand Shea, M. A "Galactic Cosmic Radiation and Solar by the Complexity and the Space Environment, edited by A S Jursa, U S Air Force Geophysics Lab Bedford, MA. 1985, Chap 6: pp 1-29

Heckman G.R., Kunches, J. M., and Allen, J.H. "Prediction and Evaluation of SolarParticleEventsBased on PrecursorInformation," Advances

Generated Proton Huxes in the InnerHeliosphere," Biological Effects and Physics of Solar and Galeicine Cosmic Radiation, Part B. Proceedings of a NATO Advanced Study bist itute on Biologic al Effects and Physics of So-1,11 and Gutacta Cosmic Radiation (Algorye, Portugal, 1991), A95 x 143 1. NATO ASI Series A Life Sciences Vol 243B, Plenum, New York, 1993.

pp_101 117 ⁹Su yart, 1) Land Shea, M. A "Modeling the Time Intensity Profile of Solar Flare Generated Particle Fluxes in the Inner Heliosphere," Advances in Space Research, Vol 1.2. Nos. 2, 3, 1992, pp 303.31. 2.

10 Acton, CHJ: "Using the Spice System in 1 lelp Plan and Interpret

Space Science Observations," Proceedings of SPACEOPS 92 The Second International Symposium on Ground Data Systems for Mission Operations. Jet Propulsion Lab California Inst of Technology, Pasadena, CA, 1993, pp.

UParker, FN Interplanetary Dynami cal Processes, Monographs and Texts in Physics and Astronomy, edited by R.E. Marshak, V(II.8, Intescience, New York, 1963, Chap 10, pp. '31-150

¹²Beeck, J Maso ⁿ. (; M Hamilton, D (' Wibber enz. G Kunow, H Hove stadt, D., and Klecker, B. "A. Multispacecraft Study of the Injection and a ransport of Solar Energetic Particle's," Astrophysical Journal, Vol 322.

No. 7, 1987, pp 1052 1072 ¹³ Shea, M.A. and Smart, D.F., "History of Energetic Solar Particles for the Past Three Solar Cycles Including Cycle ?? Update," Biological Effects and Physics of Solar and Galactic Cosmic Radiat (0/1. PartB, edited by c E Swenberg, GHorneel and E.G. Stassinopoulos, Plenum, New York 1993.

pp 37-7 1 "Suns, E TKrimig is, \$ M., "Interplanetary Energetic Particle Observations of the March 1989 Evertus," Max 497, Workshop & Deve Iopinents in Observations and Theory for Solen Cycle 22 NASA Gode fard Space Hight

Center, 199 1. pp 246, 247

Meared by TRAC/L ROBB.

My Concerns that This System

Ins NOT BEEN CAPTURED OR PARKIED.

Inda Worred

14/16